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Abstract 

 

A major well-documented feature of cortical functional organization is the presence of prominent 

broadly tuned feed-forward inhibition in the input layer 4, in which local layer 4 inhibitory cells 

receive direct thalamocortical input and in turn suppress responses of neighboring layer 4 

excitatory cells to their thalamocortical drive, thereby sharpening their receptive field properties. 

Here we review the evidence that the presence of broadly tuned feed-forward inhibition in layer 4 

turns local layer 4 domains into functional analogs of Radial Basis Function networks, enabling 

layer 4 to contribute importantly to sensory information processing as a pluripotent function 

linearizer: i.e., it performs such a transform of afferent inputs to a cortical column that makes 

possible for neurons in the upper layers of the column to learn and perform their complex functions 

using primarily linear operations. 

 

Feed-forward inhibition is subserved by fast-acting basket cells and slow-acting neurogliaform 

cells, which rely on GABAA and GABAB receptor-mediated inhibition, respectively. Their 

respective contributions can be observed by measuring tactile stimulus detection threshold using 

step vs. ramp vibrotactile stimuli. The static (step) threshold reflects basket-mediated inhibition, 

whereas the difference between the static and dynamic (ramp) thresholds reflects neurogliaform-

mediated inhibition. Our feed-forward inhibition metric, which is based on the static and dynamic 

detection thresholds, can provide significant insight about the neurological health of the cortical 

circuitry, given that neurogliaform cells are engaged in on-demand energy homeostasis of cortical 

networks through their local release of insulin. For example, we have found this metric to be below 

normal in adolescents with autism spectrum disorder, but highly elevated in type 2 diabetes. 

Maladaptive feed-forward inhibition can have significant downstream implications for cortical 

information processing, and our metric can potentially be an effective means for evaluating a 

number of cortical abnormalities. 

 

 

 

 

Contribution of Layer 4 to cortical information processing as a pluripotent function 

linearizer 

 

Cortical areas comprising the neocortex are organized anatomically and functionally into multiple 

intertwined information-processing streams (Felleman and Van Essen 1991).  These streams build 

their functional properties incrementally, with the hierarchically higher-level cortical areas 



building their more complex functional properties on the simpler properties developed by the 

lower-level cortical areas (Iwamura 1998; Rauschecker 1998; Grill-Spector and Malach 2004). As 

a part of this functional elaboration, each successive cortical area receives its afferent input from 

the lower-level cortical areas and/or the thalamus and computes certain higher-order nonlinear 

functions over that input (Figure 1A). The computed nonlinear functions are not predefined, but 

are learned from experience (Sur and Rubenstein 2005).   

 

In the field of machine learning and pattern recognition, it is well appreciated that learning 

nonlinear functions is much more difficult than learning linear functions. To overcome such 

difficulties, in 1990s a highly effective strategy emerged for dealing with nonlinear problems, 

according to which the problem’s input space should be transformed into a new higher-

dimensional “feature” space, in which the problem becomes linear and thus more readily solvable 

with efficient linear techniques (Schölkopf and Smola 2002).  The proven success of this 

“problem-linearization” strategy in machine learning naturally raises a question whether such a 

strategy might also be used by neocortex in its experience-driven development, during which it 

acquires its unrivaled ability to recognize in its sensory input patterns the perceptually and 

behaviorally significant features of high degrees of nonlinear complexity and abstraction (Kourtzi 

and DiCarlo 2006; Freedman and Miller 2008). 

 

All cortical areas face essentially the same task of learning to compute their nonlinear functions 

over their afferent inputs and all of them can benefit from doing their own function linearizations. 

The principal initial recipient of the afferent input to a cortical area is its Layer 4 (L4).  L4 converts 

that input into a new form and outputs that new form to the upper layers (Layers 2 and 3, or L2/3) 

of the same cortical area for further processing (Figure 1B).  The product of that L2/3 processing 

is then sent to L4 of the next cortical area, where the two-stage information processing operation 

is repeated (Figure 1A), but on a higher level, building on the advances made by the preceding 

cortical area (Rockland and Pandya 1979; Felleman and Van Essen 1991). The division of tasks 

between L4 and L2/3 does suggest that a function-linearization strategy might be implemented in 

L4 for the benefit of L2/3.   

  

According to this strategy, the task of L4 cells would be to enable the L2/3 cells to learn and 

perform advanced nonlinear functions over the afferent inputs (i.e., their “target” functions) using 

fundamentally linear operations.  This task is accomplished by transforming the afferent inputs in 

L4 in such a nonlinear manner that makes linear the relations between the outputs of the L4 cells 

and the target L2/3 functions. In their transformation of the afferent inputs, L4 cells in a cortical 

column will have to “linearize” target functions for the large number of cells comprising L2/3 of 

the column.  Furthermore, since the L2/3 target functions are not specified a priori, but are 

developed by L2/3 cells gradually in a process of experience-driven self-organization and without 

providing any significant feedback to L4, the L4 cells will have to linearize the potential L2/3 

target functions “blindly.” This means that the L4 transform has to be “pluripotent.”  That is, the 

L4 transform should be optimized so as to make linear as broad a repertoire of potential functions 

over the afferent inputs as possible.  The L2/3 cells will then select their target functions from this 

repertoire. 

 

Although at a first glance such a pluripotent function linearization transform might seem daunting, 

its mathematically abstract elaboration under very basic cortically imposed constraints does readily 



produce a computational system that closely resembles the real cortical L4 in its structure and 

functional properties (Favorov and Kursun 2011). Such a biologically realistic and highly effective 

pluripotent function linearizer has the following ingredients (Figure 2):  (1) the output of each 

excitatory L4 cell is computed, in part, as a weighted sum of its afferent inputs, which are Hebbian; 

(2) lateral interconnections among L4 cells are used to diversify the afferent connectional patterns 

among L4 cells in a cortical column and give them a rich variety of receptive field properties; and 

(3) feed-forward inhibition makes L4 cells behave similarly to radial basis function (RBF) units 

and is principally responsible for function linearization capabilities.  Importantly for the L4 

linearizer’s pluripotency, RBF networks are recognized as highly capable universal function 

approximators (Park and Sandberg 1991; Kůrková 2003).   

 

Feed-forward inhibition is a prominent property of the real L4 functional architecture (Miller et al. 

2001; Alonso and Swadlow 2005).  Feed-forward inhibition of L4 excitatory cells (which include 

spiny stellates, pyramidal cells and star pyramids) is mediated by L4 inhibitory cells that are 

directly driven by the afferent inputs to the neighborhood (Porter et al. 2001; Hirsch et al. 2003; 

Swadlow 2003; Sun et al. 2006; Cruikshank et al. 2007; Hull et al. 2009). While this feed-forward 

inhibition is broadly tuned, comparable to the tuning of the afferent input, it effectively sharpens 

tuning of excitatory L4 cells by suppressing the weaker thalamic drive evoked by non-preferred 

stimuli (DeAngelis et al. 1992; Kyriazi et al. 1996; Bruno and Simons 2002; Swadlow 2002).   

 

When the above computational model of L4 is developed on natural images and LGN-like input 

patterns and optimized for maximal pluripotency in linearizing arbitrary functions over natural 

images, it acquires structural and functional properties that closely match the properties of L4 of 

the cat primary visual cortex (Favorov and Kursun 2011).  The list of nontrivial parallels, which 

are described in detail in Favorov and Kursun (2011), includes the following: 

a) presence of inhibitory cells with strong direct thalamic inputs (Cruikshank et al. 2007) and 

unoriented RFs (Hirsh et al. 2003), which implement feed-forward inhibition; 

b) high density of excitatory interconnections among the cells in the L4 network (Anderson 

et al., 1994; Tarczy-Hornoch et al. 1999); 

c) anti-Hebbian plasticity of lateral excitatory connections among cells in the L4 network 

(Egger et al. 1999; Sáez and Friedlander 2009); 

d) self-organization of LGN connections to L4 cells into narrow parallel ON-center and OFF-

center strips, producing simple-cell receptive fields (Figure 3A; Hubel and Wiesel 1962; 

Alonso et al. 2001); 

e) comparable numbers of receptive field subfields and aspect ratios (Jones and Palmer 1987; 

DeAngelis et al. 1993; Gardner et al. 1999); 

f) emergence of end-inhibition receptive fields/hypercomplex cells (Figure 3A; Hubel and 

Wiesel 1962; Dreher 1972; Tolhurst and Thompson 1981); 

g) prominent phase modulation of cells’ responses to grating stimuli of optimal orientation 

(Figure 3B; Skottun et al. 1991); 

h) narrow orientation tuning of comparable half-width at half-height (Figure 4; Rose and 

Blakemore 1974); 

i) contrast invariance of orientation tuning (Figure 4; Sclar and Freeman 1982); 

j) comparable average optimal spatial frequency of grating stimuli (Movshon et al. 1978); 

k) narrower orientation tuning for grating stimuli of higher spatial frequencies (Vidyasagar 

and Siguenza 1985); 



l) narrow orientation tuning of LGN inputs to L4 cells, close to orientation tuning of their 

outputs (Ferster et al. 1996; Chung and Ferster 1998); 

m) presence of iso-orientation inhibition (Ferster 1986); 

n) suppressive effects on cells’ responses to optimally oriented grating stimuli by 

orthogonally oriented superimposed gratings (plaid-like stimuli; Bonds 1989; DeAngelis 

et al. 1992). 

 

The presence of both feed-forward inhibition and anti-Hebbian lateral connections (which are 

unique to L4; see Egger et al. 1999; Sáez and Friedlander 2009)  is required in order for L4 cells 

in the model to develop the biologically accurate diversity of multi-subfield receptive fields and 

acquire orientation tuning matching in sharpness that of real L4 neurons. 

 

In conclusion, the fact that an efficient pluripotent function linearizer, designed on a few generic 

neurally-guided principles, exhibits emergent structural and functional properties that closely 

resemble those of cortical L4 strongly suggests that L4 has effective function-linearization 

capabilities and that its major function is to perform a transform of its afferent input enabling the 

upper layers to learn and compute complex functions using operations that are to a large degree 

linear.   

 

 

 

Temporal stimulus-evoked dynamics of L4 feed-forward inhibition 

 

Feed-forward inhibition in L4 is produced by basket cells and neurogliaform cells residing there. 

Both cell types receive strong afferent input, but basket cells act via fast GABAA receptor-

mediated synaptic transmission, whereas neurogliaform cells release GABA as a volume 

transmitter and produce more slowly developing GABAA and very slow GABAB receptor-

mediated inhibition (Tamas et al. 2003; Olah et al. 2009). As a result, feed-forward inhibition can 

be expected to have fast and slow temporal components, associated with basket and neurogliaform 

cells, respectively. This means that in response to a stimulus application, feed-forward inhibition 

in L4 develops gradually and, if the stimulus is continuing, feed-forward inhibition reaches its 

maximum a few hundreds of milliseconds after the stimulus onset. The initial – and only partial – 

stimulus-evoked feed-forward inhibition is generated exclusively by the basket cells, but then it is 

gradually augmented by the slowly developing contribution from the neurogliaform cells. Given 

our understanding (see above) that feed-forward inhibition contributes greatly to sharpening 

receptive field feature extracting properties of L4 cells (Figure 4), we can expect that the initial 

response of L4 cells to a stimulus will be less feature selective (and thus the stimulated individual 

less discriminative) than after a short period of continuing exposure to the stimulus. 

 

Another aspect of somatosensation where fast vs. slow feed-forward inhibition should be clearly 

observable is in sensory testing of tactile stimulus detection threshold. The cells responsible for 

feed-forward inhibition are more responsive to weak afferent drive than are the excitatory L4 cells. 

Thus, sub-threshold or weak stimulus inputs should have the effect of raising the threshold at which 

excitatory L4 cells begin to respond to peripheral stimuli. Therefore, the sensory detection 

threshold should reflect the effectiveness of feed-forward inhibition: the stronger the feed-forward 

inhibition in a tested individual, the higher his/her detection threshold.  



One sensory testing method that we have developed to examine feed-forward inhibition in human 

subjects involves the measurement of two independently collected values:  (1) a “static” detection 

threshold, defined as the weakest 0.5s duration vibrotactile stimulus an individual can detect; and 

(2) a “dynamic” threshold, defined as the weakest slowly ramping vibrotactile stimulus an 

individual can detect (Figure 5). The static threshold is measured using a 20-trial Two Alternative 

Forced Choice (2AFC) Tracking protocol. During each trial a 25Hz vibrotactile test stimulus 

(lasting 500ms) is delivered to the tips of either index (D2) or middle (D3) fingers.  Following 

each stimulus, the subject is prompted to select the skin site (D2 or D3) that was perceived to be 

stimulated. After a 5sec delay the stimulation is repeated until the completion of the 20 trials. The 

stimulus amplitude starts at 15μm and is modified based on the subject’s response in the preceding 

trial. During the dynamic threshold protocol, a 25Hz vibrotactile stimulus is delivered to either 

D2 or D3.  The amplitude of the stimulus starts from zero and is increased at a rate of 2μm/s. The 

subject is instructed to indicate the skin site receiving the stimulus as soon as the vibration is 

detected. Multiple trials are conducted and the results from those trials are averaged for each 

subject.  

 

In our interpretation of these two tests, in the static threshold test the subject detects the presence 

of the threshold stimulus right at its onset, when feed-forward inhibition is coming only from fast 

basket cells but not from slow neurogliaform cells, allowing excitatory cells to respond with spike 

discharges to the stimulus-evoked afferent drive. In contrast, during the dynamic threshold test the 

stimulus starts at zero amplitude and grows in strength at a slow rate that is sufficient to engage 

slow-acting neurogliaform cells. By the time the stimulus amplitude reaches the static threshold 

(typically 4-5s into the stimulus), the feed-forward inhibition is stronger than during the static 

threshold test, coming now from both basket and neurogliaform cells, and it prevents excitatory 

cells from firing their spike discharges. Instead, the stimulus amplitude will have to be raised 

higher in order for the afferent drive to overcome feed-forward inhibition in the excitatory cells, 

so that they will finally emit spike discharges and evoke conscious perception of the stimulus. 

Computer simulation of this phenomenon is illustrated in Figure 6. 

 

Consistent with this interpretation, dynamic thresholds have been demonstrated to be significantly 

elevated relative to static thresholds in healthy individuals across the age spectrum (Figure 7; 

Zhang et al. 2011). The plot in Figure 7 shows that although the static detection threshold rises 

with age (due to age-related changes in the skin), the dynamic threshold rises as well and continues 

to exceed the static threshold.  This difference in the two measures can most parsimoniously be 

accounted for by feed-forward inhibition: i.e., the dynamic threshold is higher than the static 

threshold because the initial sub-threshold stimulus that is delivered during the dynamic testing 

increases the detectable threshold via feed-forward inhibition mediated by the neurogliaform cells. 

 

 

 

Feed-forward inhibition in neurological disorders 

 

Autism Spectrum Disorder.  A number of populations with some type of neurological disorder 

have demonstrated a reduction in the difference between the static and dynamic thresholds. One 

of the most studied is autism spectrum disorder (ASD).  Multiple lines of evidence point to GABA 

deficiencies as a problem in ASD (for review, see Purkayastha, et al. 2015 and Brondino et al. 



2016) and it is clearly established that there is an imbalance in excitation and inhibition in this 

population.  When measures of static and dynamic threshold were obtained in multiple studies in 

adolescents with ASD, there was little or no difference found between the two metrics, suggesting 

depressed neurogliaform cell-mediated feed-forward inhibition (Francisco et al. 2012; Puts et al.  

2014, 2016; Tavassoli et al. 2015). Given the reliance of neurogliaform cells on GABAB receptor-

mediated inhibition, this finding suggests that ASD might be associated in particular with reduced 

GABAB involvement in cortical operations.  

 

In one of the studies (Puts et al. 2016), the same individuals with ASD who were found to have 

similar static and dynamic thresholds, were also found to have lower GABA levels based on their 

magnetic resonance spectroscopy (MRS) imaging. Figure 8 compares the test performance of 37 

typically developing children (TDC) with 35 children with ASD studied by Puts et al. (2016). It 

shows no significant difference between static and dynamic thresholds in children with ASD, 

suggesting very little involvement of GABAB inhibition by neurogliaform cells in feed-forward 

inhibition. At the same time, the dynamic thresholds are very similar also between ASD and TDC 

groups (p = 0.55), indicating that their fully expressed feed-forward inhibition has comparable 

effectiveness. This indicates that GABAA inhibition by basket cells must be enhanced in the ASD 

group in order to compensate for the loss of GABAB inhibition. This inference is supported by the 

finding that GABAA-specific static detection threshold in the ASD group is elevated relative to the 

TDC group (p = 0.03). The last inference to make from the collected data is that the reduced GABA 

levels in the ASD group, detected by MRS imaging, is likely to be due predominantly to reduction 

of GABA produced by neurogliaform cells. 

 

 

Diabetes. Since we view depressed activity of neurogliaform cells as playing a major role in 

reducing dynamic detection threshold, we sought to study a population in which neurogliaform 

cells might be hyperactive. These cells happen to be the only known cells in the neocortex that 

produce and release insulin (Molnár et al. 2014). According to Csajbok and Tamas (2016), the 

function of neurogliaform cells is to regulate on-demand energy homeostasis of local cortical 

networks, and they respond to transient elevation of neural activity in local circuits during periods 

of information processing in three complementary ways. First, they release insulin, which 

increases transport of glucose into active neurons, thus satisfying their transient energy demands. 

Second, neurogliaform cell-released insulin suppresses excitation in cortical neurons. And third, 

neurogliaform cells release GABA, which also suppresses local neural activity via GABAB 

receptor-mediated inhibition. The second and third actions together curtail further energy demands 

of the local circuit. 

 

 In Type 2 Diabetes, insulin resistance impacts CNS and is associated with cognitive impairments 

(McNay and Recknagel 2011). We hypothesized that such insulin resistance in cortical networks 

could lead to chronic increase in insulin demand and consequently to hyperactivity in 

neurogliaform cells, which will manifest itself in elevated neurogliaform cell-mediated feed-

forward inhibition. Based on this consideration, we measured static and dynamic detection 

thresholds in 37 Type 2 diabetic patients and found that the difference in  dynamic and static 

thresholds in this group was significantly larger than in healthy control subjects (Figure 9).  Even 

patients who were in the early stages of diabetes and had not yet developed peripheral neuropathy 

already had dynamic detection threshold statistically higher than the control population. Thus, this 



sensory testing metric (i.e., the difference between the static and dynamic detection thresholds) 

could serve as a sensitive indicator of insulin resistance in neocortex and its impact on CNS 

information processing.  

 

 

Could maladaptive feed-forward inhibition play a significant role in neurodegenerative 

processes?  Cortical insulin is important for development of dendritic arbors and maintenance of 

excitatory and inhibitory synapses, thus contributing to the balance of excitation and inhibition in 

cortical networks (Csajbok and Tamas 2016). It is not inconceivable that altered activity of 

neurogliaform cells might play a role in the development of some neurodegenerative disorders, 

particularly those that have been linked with altered insulin activity. For example, a wide range of 

studies have implicated high levels of stress as playing a role in the development of PTSD 

(reviewed by Delaney 2010). Stress increases cortisol levels in the blood, which then damages 

brain cells by inhibiting insulin production, which leads to lower than normal glucose uptake.  

Thus, long-term stress leads to long-term metabolic problems in the CNS, which in turn results in 

a neuroinflammatory response.  PTSD has been described in multiple studies as being the result 

of chronic neuroinflammation (Furtado and Katzman 2015).  Additionally, there is a significant 

association of diabetes with PTSD (Egede and Dismuke 2012) and some success has been 

demonstrated with intranasal insulin treatment of acute psychological stress (Bohringer et al. 2008) 

as well as a variety of other neurocognitive disorders such as Alzheimer’s disease (Chapman et al. 

2013; de la Monte et al. 2013).  Thus, there does appear to be some relationship between stress, 

CNS metabolism, neuroinflammation and insulin and the development of some neurodegenerative 

disorders.   

 

It is also possible that local CNS insulin levels (which can be 10-100 times plasma insulin levels) 

play a role in the development of diabetes as a consequence of a neurodegenerative process.  

Impaired or excessive feed-forward inhibition mediated by neurogliaform cells could lead to 

altered CNS insulin levels, which would in turn modulate hypothalamic activity that has a 

downstream effect on pancreatic insulin production.  In other words, impaired feed-forward 

inhibition, which would undoubtedly result in both sensory and cognitive deficits, and could be 

the result of an imbalance of excitation and inhibition, could lead to alterations in neurogliaform 

activity that impact CNS insulin levels.  
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FIGURE LEGENDS 

 

 

FIGURE 1.  Stages of cortical forward information processing. (A) Peripheral sensory input, 

delivered to the cortex via the thalamus, is passed through a series of cortical areas. Each area 

transforms its input from the preceding stage by computing a certain nonlinear output function F 

over it. This processing flow is illustrated on an example of the somatosensory cortex, comprising 

Brodmann cytoarchitectonic areas 3b, 1, 2, and 5, as well as somatosensory ventrobasal (VB) 

thalamic complex. (B) In each cortical area, the afferent input is first preprocessed in the input 

layer 4, which performs a function-linearization transform , and then the output function F is 

computed in the upper cortical layers 2 and 3. The insert illustrates the function linearization 

strategy of transforming the input space into a “feature” space on an example of a classification 

problem. The curved decision boundary separating two classes of data samples (little red and blue 

squares) in the input space is made linear – and thus easier to learn – by mapping the data samples 

into a nonlinear transform of the input space.   



 

FIGURE 2.  Mathematical representation of the functional structure of macrocolumnar 

Layer 4 domains. Output of excitatory L4 cell i is computed as a function of its afferent inputs 

a1…an and lateral inputs from neighboring cells 1…k; wij and ik are connection weights 

(Favorov and Kursun 2011). 

 

 

FIGURE 3.  The pluripotent function-linearizing L4 model, trained on natural images, 

develops receptive fields closely matching those of the simple cells in the visual cortex.  (A) 

Two examples of simple-cell receptive fields and an end-stopping receptive field developed by the 

L4 model.  (B) Single-cell property of prominent phase modulation of a model cell’s response F 

to a moving grating stimulus at the optimal orientation vs. no response to the same grating at the 

orthogonal orientation. 

 

 

FIGURE 4.  Orientation tuning of the model L4 cells is contrast invariant and highly, but 

not fully, dependent on feed-forward inhibition.  (Left)  Average orientation tuning of all L4 

cells with simple-cell receptive fields (gray curve – maximally contrasted grating stimuli; black 

curve – grating stimuli at 1/3 of the maximal contrast). Note that, just as in the real visual cortex, 

stimulus contrast does not change the tuning width.  (Right)  Average orientation tuning of all the 

simple cells with feed-forward inhibition turned off. 

 

 

Figure 5.  Sensory testing of human vibrotactile detection threshold. (A) Tactile stimulator.  

(B) Two vibrotactile detection thresholds are measured using static and dynamic threshold 

protocols.  

 

 

FIGURE 6.  Computer simulation of L4 response to static and dynamic threshold stimuli. 

The pluripotent function-linearizing model of a macrocolumnar L4 domain (Favorov and Kursun 

2011) was used for simulation. The top plot shows the time-course of the mean L4 population 

firing rate during static (blue curve) and dynamic (red curve) sinusoidal skin stimulation. A 

hypothetical perceptual stimulus detection threshold is indicated by the green horizontal line. The 

bottom plot shows the time-course of the stimulating probe’s skin indent. The step stimulation 

pattern (blue) evokes L4 response that barely exceeds the detection threshold and therefore its 

amplitude is taken as the static threshold. The ramp stimulation pattern (red) evokes a gradually 

rising L4 response, which crosses the detection threshold at a much higher stimulus amplitude, 

which is taken as the dynamic threshold. 

 

 

FIGURE 7.  Average vibrotactile detection thresholds measured in groups of healthy 

subjects of different ages using static and dynamic threshold protocols (Figure 5).   

 

 



FIGURE 8.  Average vibrotactile detection thresholds measured in 37 typically developing 

children and 35 children with ASD using static and dynamic threshold protocols (based on 

Puts et al. 2016).   

 

 

FIGURE 9.  Average vibrotactile detection thresholds measured in 17 healthy control 

subjects, 28 type 2 diabetes subjects without peripheral neuropathy, and 9 type 2 diabetes 

subjects with developed peripheral neuropathy using static and dynamic threshold 

protocols.  Note that in the first two groups the static threshold is the same, but it is statistically 

higher in the third group, presumably due to their peripheral neuropathy. 
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