Understanding the neurophysiological component of persistent fatigue following concussion using transcranial magnetic stimulation and neurosensory assessment.

Alan J Pearce PhD^a, Doug A King PhD^b, Cloe Cummins PhD^b, Mark Tommerdahl PhD^{c,d}

- ^a Department of Rehabilitation, Nutrition and Sport, La Trobe University, Melbourne, Victoria, Australia
- ^b School of Science and Technology, University of New England, Armidale, NSW, Australia
- ^c Department of Biomedical Engineering, University of Northern Carolina, Chapel Hill, United States of America
- ^d Cortical Metrics Inc., Carrboro, Northern Caroline, United States of America

Introduction

Post concussion syndrome/symptoms (PCS) is defined as ongoing symptoms following a concussion or mild traumatic brain injury (mTBI) for a minimum of three months.¹ Whilst individuals can experience a range of symptoms, fatigue is a common symptom but is often overlooked.²

Aim

To study the underlying neurophysiology between those with chronic PCS, with ongoing fatigue, to those who have recovered from a concussion and age-matched controls with no history of concussion.

- 1. Post-concussion with ongoing fatigue
- (n=11; 41.1 ± 14.9 yr);
- 2. Post-concussion without fatigue (n=11; 34.9 ± 5.8 yr);
- 3. Non-concussed controls (no history of concussion) (n=13; 39.2 ± 8.7 yr).

Testing involved participants completing:

- Fifteen question self-report post-concussion fatigue scale³
- Single-pulse transcranial magnetic stimulation (Magstim, UK)^{4,5} (fig 1)
- Neurosensory tactile vibration (Cortical Metrics, USA)⁶ (fig 2)

Fig 1. Single and pa TMS schematic7, and exa single pulse MEP wavefo

Results

Mean time reported post-concussion was 15.6 ± 6.3 mths. Figures 3 to X illustrate differences between groups (*p<.05).

Fig. 3. (a-f) Comparison of mean reaction time (a) and variability (b), discriminate intensity of stimulus (c), duration of stimulus (d), which stimulus appeared first (e) and fatigue index (f).

Summary and conclusions

This preliminary study showed differences in GABAergic neurophysiological mechanisms between those with ongoing fatigue compared to those who have Fig. 5 (a-c) Example of overlaid MEP sweeps from 3 recovered from a concussion, and controls.

Whilst clinical and cognitive measures are still vital in understanding persistent fatigue References following a concussion or mTBI, this preliminary study illustrates the importance of utilizing neurophysiological measures as part of a multi-modality assessment schedule.

participants at 170% aMT between PCS fatigue (a), post concussion asymptomatic (b) and control (c).

- Rau et al, Concussion, 2017
 Johansson and People. Johansson and Rönnbäck, Taumatic Brain Injury (INTECH), 2014 Johansson et al, Brain Inj, 2009 Pearce et al, J Neurotrauma, 2014
- Pearce et al, Brain Inj, 2017
- 5. Tommerdahl et al Milit Med 2015
- 6 7 Brown et al, Degen Neurol Neuromusc Dis, 2014

Acknowledgements: Partial support provided by the US Office of Naval Research. AJP is supported by funding from Impact Technologies and Smart Head Play charity, Australia. MT is a director of Cortical Metrics. Other authors declare no conflicts of interest.